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1.0   INTRODUCTION 

** 

\ 

Excellent agreement has been shown between element patterns of 

circumferential and radial slots on a cone,   computed with the normal mode 

series computer programs,   and patterns measured with an experimental 

model with both types of slots.    When the modal series is used for the com- 

putation of exact patterns,   the number of modes required for convergence of 

the series increases as the distance of the slot location from the tip of the 

cone increases.    Computational difficulties from accumulated round-off 

errors also affect the accuracy and limit the applicability of the modal series 

program to element positions not too far from the cone tip. 

The approximate asymptotic approach,   on the other hand,   allows the 

separation of the diffracted field and the geometrical optics field.    More spe- 

cifically,   the asymptotic approach resulted in complete expressions for the 

Eg and EA radiation fields  in terms of optical,   transition,  and diffraction 

fields.    The complete expressions for each of the two field components,  in a 

form suitable for numerical computation,   were included in the Final Report 

on Contract No.  NOP019-74-C-0127. '    An examination of these expressions 

indicates that the diffraction coefficients of both field components are only 

a function of the angular coordinates and not of the location of the radiating 

element.,fThe diffraction fields for any element location may then be found by 

taking the product of these diffraction coefficients and the factor containing 

the information about the location of the radiating element.    The diffraction 

P. C.   Bargeliotes,   A. T.   Villeneuve,   and W. H.   Kummer,   Pattern 
Synthesis of Conformal Arrays.   Final Report on Contract N00019- 
74-C-0127,   Hughes Aircraft Company,   January 1974 to January 1975. 

rmf '"«ir ■-"'"" -   — - *        •■-— ^ 
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coefficients need to be computed only once for a given cone angle,   so that the 

repetition of lengthy computations is eliminated.    The optical and transition 

portions of the fields are given in terms of functions that are more suitable 

for numerical computation than the modal series expressions. 

Because a number of the special functions in these expressions pre- 

sented considerable numerical computational difficulty, they were investigated 

individually for a better understanding of their  behavior.    In the notation of 

the Final Report referenced previously,  these  special functions included T(u), 

U(u),   UA(U),   and the branch-cut contributions I^'(a) and 1^'.(o).    The sub- 

script <j) denotes that the function is used only for the 4» -component of the field. 

A detailed description of the behavior of these  special functions is included in 

Section 2 of this report.    Various plots of optical and transition fields for the 

first four modes together with certain corrections to the asymptotic expres- 

sions are included in Section 3.    In Section 4,   the diffraction fields and diffrac- 

tion coefficients are examined in detail. 

The diffraction coefficient and the diffraction field for a particular 

circumferential mode were computed numerically for both polarizations from 

the approximate expressions.    The computation of the diffraction coefficients 

requires knowledge of the roots of associated Legendre functions as well as 

of the functions themselves and their derivatives.    Computational routines 

for the roots and the functions are available in the exact modal series pro- 

gram.    These  routines are made available for the computation of the diffrac- 

tion coefficients through combination of the asymptotic method program with 

the exact modal series program.    More importantly,   the combination of the 

two computer programs allows pattern computations in the regions in which 

the asymptotic expressions fail to yield accurate results.    As will be seen 

later,  the region of poor performance of the asymptotic method includes the 

region 6 £ TT  - Q    for the 6-polarization.    For the (()-poIariza> • >n,  this region 

is extended even farther.    In addition,   the asymptotic method is not valid for 

radiating elements  close to the tip of the cone. 

Radiation patterns of the circumferential slot for a particular azimuthal 

mode were computed by a summation of the optical,   transition,   and diffraction 

fields for the particular mode.    Total radiation patterns were obtained by 

■i 

\ 

li 
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summation of sufficient azimuthal modes in a manner similar to that used in 

the modal series program.    In Section 5,  total radiation patterns for the first 

three modes are compared with corresponding patterns from the exact modal 

series computer program.    Also in this section are shown patterns computed 

from a computer program that combines the asymptotic program with the 

modal series program. 

In Section 6,  the results of calculations of mutual coupling between 

slots located on a circular cylinder are presented in graphical form for vari- 

ous separations. 
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i. . 
Z.O   NUMERICAL COMPUTATION OF TRANSITION FUNCTIONS 

{ 
i 
v . Because each of the special functions  considered has an inherent 

singularity,   a computational difficulty results.    The validity of the approxi- 

mations for only a limited range of the particular independent variable further 

compounds the computational difficulty.    For brevity,   the notation used in the 

referenced Final Report  (1975) will be followed.    Details of the derivation of 

the functions can be found in Appendix A of the same report. 

{ ! ! 

L 

2. I   ZEROTH-ORDER TRANSITION   T(u) 

The zeroth-order transition function T(u) is defined by 

T(u) 1 + i f(|u|)+ g(|u|)+ i[f(|u|) - g(|u|)] - ^ sgn(u) (1) 

where u  =   (ka/ir) a =   (ka/Tr)       (TT-e0-e) and the auxiliary functions f,   g have 

simple rational approximations.    It is an odd function of u and its singularity 

is characterized by the last factor in Equation (I).    The magnitude and phase 

variation as a function of u,   which is related to 6,   is  shown in Figure    1.    The 

zeroth-order transition function is used to order O [l/N/ka] in the E^ com- 

ponent and O [l/ka] in the Eg component. 

-W 
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Figure  1.    Zeroth-order transition,   T(u). 

2.2    FIRST-ORDER TRANSITION,   U(u) 

The first-order transition function is defined by the expression 

41 

/< 

exp(-x   ) Ln(w-x) dx-Ln(w) (2) 

where 

w mm-mm* 
It can be easily shown that U(u) is an even function of u.    From the expression 

it is evident that U(u) increases very rapidly near u=0 and decreases to zero 

as u becomes large.    Figure 2 shows the magnitude and phase of the function. 

For   |u|<2. 6,  the function was computed with a power series expansion of the 

■r^2±±^L^^..A   :. mtä ÜttaMi 
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Figure 2.    First-order transition,   U(u). 

integrand and then from the results of the moment theorem of the Gaussian 

density function.    For  |u|>2.6,   the function was computed by an asymptotic 

expression of the integrand.    The transition from one range to the other is 

excellent,  as shown by the graph in Figure 2.    The computed values agree to 

six significant figures at the transition point.    This computational technique 

results in a very accurate and rapid computation of the function. 

*i 
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2.3   FIRST-ORDER TRANSITION FUNCTION,   U^u) 

The general form of the first-order transition function was found in 

the analysis for the EA component and is given by the expression 

U^(u) J* Kf 
co 2 

-(x-ibr Ln(w-x) dx- Ln (w) (3) 

where 

-i TT/4 
b   = 

i 

-1 
1 

From a comparison of Equations (2) and (3),  it is evident that 

U(u)=lim LMu).     The details of the derivation and the evaluation of the integral 
b-»0     ™ 

for both positive and negative values of u are included in Appendix A of the 

Final Report (1975). 

The definition of U^lu) given by Equation (3) also introduced an addi- 
i/2ka 

tional phase factor e in the evaluation of the basic contour integral; this 

factor is neglected because,   throughout the analysis,   concern is with the  com- 

putation of the fields to order O [(ka)~       ].    Unlike U(u),   U<j>(u) is neither an 

even function nor an odd function of u.    Figure 3 shows the magnitude and 

phase variation of lUfu) for 0 < u < 6 as computed from computational algor- 

ithms similar to those used for the computation of U(u).    Both magnitude and 

phase decrease rapidly as u increases and show only moderate variation for 

large values of u.    The behavior is similar to U(u) for the same range.    As 

u becomes increasingly negative,  however,  the phase of the function varies 

moderately.    Figure 4 shows U^u) for -3 < u < 3.   It is pointed out that,   for 

ka = 39,   and 6   =170 degrees,  the range of u for which the various first-order 

transition functions must be computed is approximately -10. 5 < u < 10. 5. 

2.4   BRANCH-CUT CONTRIBUTIONS,   1^ ,♦.(«),  I™  («) [(1) 
BR* 

t(l) 
BR 

In evaluation of the first-order deformed contour integral that passes 

through the saddle points,   branch cuts were introduced parallel to the 

imaginary axis for the logarithmic singularities of the integrand.    The general 
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expression of the  branch-cut contribution was derived in Appendix A of the 

Final Report (1975) and is corrected and repeated here: 

^ '"> 
trie 

ka 2 i (k a cos a + a + — cos a tan   a1 

V 
(4) 

2TT 

k a cos a erfc /i ka cos a tan^o' 

■ 

K . 

where tan o1   =  tan a - 1 f(l) .        — .    The function P  '  (a) that appears in the k a cos a BR       ' ^ 
field expressions of both components is obtained from the above by multiplying 

-icy by e        and taking tan ö1   =  tan a.    In these  functions o- may take either of the 

following values: 

o 
10 TT-e    -6 

o 

^   = TT _ e  + e 
20 o 

(5) 

I 

From the definition it is evident that IT-2 6    <o, -STT-B    and   Tr-0    < (*-,* <TT 
o        10 o o 2 0 ~ 

as 6 varies from 0   to 6   .    Also,  o, „   = 0-,n when 6 = 0   .    Because for o 10 20 ,,. 
^i n S 0 the branch cut does not lie in the path of integration,   II.'   (o,«) and 
m BR       10 

iXr^jiQ-m) are only considered when a. rt  > 0.     The first-order branch-cut BR9    10' 7 10 ,,. 
contributions for a , « were computed with Equation (4) for iRDA^ifO an<^ with 

the corresponding expression for I    '   (o'ifj.    The results are  shown in Fig- 

ure 5.    The magnitude of both functions decreases as    a,- increases,   while 

the phase shows moderate variation with increasing <>.„.    This result is true 

at least for the range of 0-,^ indicated here.    Any smaller values of a,« fall 

outside the  "ange  of interest and the functions were not considered. 

The expression in Equation (4) is unsuitable for computation for Q^Q 

near TT/2,   because of the  1/cos a factor.    An asymptotic form of Equation (4) 

with the asymptotic representation of the complementary error function,   per- 

mits computations at and near TT/Z.    A transition point of 
20 

TT/2 0.53 

radian was  selected for the two different  computational algorithms; the results 

are shown in Figure 6 for both IDR A ^^n^ an^ ^RR ^a?0^'   .r^e magnitude of 

-   —ttnl    - Mt^ttmtämdäitiätLa^^A 
« 

■j.«..ä 
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both functions increases rapidly and at about the same rate as o^n approaches 

TT and TT-9  .    Both functions exhibit rapid variation in phase,  as shown by the 

curves. 

The branch-cut contributions,   iLp ,+, (^(O an^ ^RRA^ZO^'   
were a^so 

comouted with tan a1   =  tan a in Equation (4).     The changes in the magnitude 

and phase of the functions are noticeable throughout the range of a but are 

more so when a is near 0 and TT.    In view of this result,   it is concluded that 

the complete expression of Equation (4) should be used in the computation of 

the branch-cut contributions. 

12 
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The formal expressions of the 6- and (^-components of the electric 

fields of a circumferential slot on a conducting cone are given in the prior 

Final Report (1975) and will not be repeated here. 

The various terms in the field expressions were grouped together with 

the proper coefficients in a way that makes the optical,   transition,   and diffrac- 

tion fields easily identifiable.    This arrangement allows for easy comparison 

between the different types of fields of the 6- and «f'-polarizations.    All com- 

putations were performed for a particular mode,   paralleling the normal mode 

series computer program.    In the subsections that follow,  the discussion cen- 

ters mostly on the m   =   1 mode because it is the lowest order mode of the 

4>-polarization.     The m   =   0 mode is only applicable to the 6-polarization. 

Bargeliotes,   Villeneuve,   Kummer,   op.   cit.     The following typo- 
graphical errors should,   however     be corrected: 

1. The coefficients n,,   n^ in Equation (47c),   p.   13,   should be ru, 

2. The second exponential of Equation (3. 5),   p.  ZO,   should be 
e-ika cos (eo + 6). 

3. The radical in the last factor of Equation (3.6),   p.   Z2,   should be 
yZTr/ka. 

4. The coefficient of the second bracketed factor of Equation (3. 17), 
p.  Z5,   should be i/sin G   . 

5. The coefficient i of Equation (3.2Z),   p.   26,   should be deleted. 

6. The brace ()) should be included at the end of the TF<J) expression 
of Equation (3.Z2),   p.  Z7. 

7. The o-j^j^e,   6   ) expression of Equation (3.2Z),  p.   27,   should be 
multiplied by-l. 
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For convenience,   the different types of fields for the m     mode are 

identified by the name used in the computer program: 

OPM — optical field of ö-polarization (first two terms of SQ expression, 
p.   13 of Final Report (1975)) 

OFF —optical field of 4)-polariza ;ion (first two terms of Equation (3. 5), 
p.   20 of Final Report (1975)) 

TFT —transition field of G-polarization (TF term of ^"Q expression, 
p.   13 of Final Report (1975)) 

TFF —transition field of ^-polarization (TF<j) term of Equation (3. 22), 
p.  26,   and third term of Equation (3. 5),   p.  20 of Final Report 
(1975)) 

DFT —diffraction field of 6-polarization (last term of £Q expression, 
p.   13 of Final Report (1975)) 

DFF — diffraction field of ^-polarization (last term of Sfa expression. 
Equation (3.22),   p.   26 of Final Report (1975)) 

These descriptions and page references refer to the Final Report cited above. 

3. 1   THE OPTICAL FIELD 

The optical fields of the B-component were computed for the lowest 

four modes and are shown in Figure 7.    The magnitude of the optical field is 

independent of ka and exhibits a singularity of 6 =   0°,   while the phase varies 

rapidly with the angle 6.    In these plots,   as well as in the plots of the transi- 

tion fields of the next section,  no attempt was made to connect the phase 

points,  as the phase of these fields fluctuates very rapidly through many 

cycles as a function of G.    All asymptotic modal fields computed for the 

optical field decrease to a minimum at broadside and increase again near 

e = 0°. 
For the ^-polarization,  the first contributing mode is the m   =   1 mode. 

Furthermore,   in a comparison of the analytic expressions of EQ and E<}>,   it is 

evident that the magnitude of the optical field of the «^-polarization is propor- 

tional to 1/ka.    Because of this difference in the proportionality factor,  the 

optical field of the <t)-polarization was at first considered negligible and was 

not included in the computations.    When the optical field was compared with 

certain factors of the transition field of the same polarization,   however,   it 

was found to make significant contributions to the total field.    (The overall 

14 
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(continued) 

Figure 7.    Computed 6-polarized 
optical fields for four modes. 
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effect of this optical field are covered in the discussion of the computed 

radiation patterns. )   Figure 8a shows this optical field for the m   =   1 mode. 

The factor for the m   =   Z mode,   shown in Figure 8b,   behaves in a similar 

manner,   but its magnitude is at a slightly higher level than the corresponding 

factor for the m   =   1 mode.    Even more significant is the contribution of the 

optical field of the ^-polarization for the m   =   3 mode (Figure 8c). 

3.2    THE TRANSITION FIELD 

The transition field of both field components is a much more compli- 

cated function,   because it is  comprised of several special functions such as 

the zeroth order transition,   the first-order transition,   and the branch-cut 

contributions.    These special functions were individually investigated and 

computed previously.    For the B-component,  all the special function factors 

of the total transition field are proportional to (1/ka)       .    Figure 9 presents 

the modal transition fields of the 6-component for the first four modes.    All 

modes behave similarly in the broadside region but differ significantly at 

regions near the optical boundary,    6 = 6    and   6 =  TT  - 0   . 0 r 7 o o 
The transition field of the ^-polarization is comprised of several addi- 

tional factors compared with the transition field of the B-polarization; it 

includes branch-cut contributions and first-order transition functions unique 

to this polarization,   in addition to the functions appearing in the 

e-polarization expression.    These are identified by the subscript "<j>" in the 

defining expression.     Unlike the 6-polarization,  the zeroth-order transition 

field represented by the T(uin) function is of order one in (l/ka) in this com- 

ponent.    The significance of this factor can be seen from a comparison of the 

two graphs in Figure  10; the zeroth-order transition field is included in 

Figure 10a but not in Figure  10b.    The effect of the zeroth-order transition 

is even more apparent when the approximate modal pattern is compared with 

the corresponding pattern computed by the normal mode series method.    The 

inclusion of the first-order transition functions,   U^'^U-,^) and U<|)V(u,0),   in 

the computation of the total transition field introduces undesirable oscillations 

in the magnitude of this field.    The exact reason for this degradation is not 

understood at this time,   but it may be caused by improper computation of the 

two functions.  For the present,   these factors were omitted from the 

computations. 
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Figure 8.    Computed (j)-polarized 
optical fields for three modes. 
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3. 3   HIGHER ORDER IN (1/ka) TRANSITION FIELD 

The need to include the optical term and the zeroth-order transition 

term in the total field,  both of which are of order 0 (1/ka),   prompted the 

investigation of other terms also of order 0 (1/ka) that had previously been 

neglected in the field expression.    These additional terms arise from the 

pli contour integral,  which was set equal to zero in Equation (3. 7) of 

the Final Report (1975).    A closed-form expression of this contour integral is 

,(1)   (A) 
24) c. 

1 /2 .   /sin e \U£- 

71 birr)     r[ci+ ic2+ ic3]lB>io^io) 

rd) +   [cl   +   ic2   -   ic3]lBR(a20) 

-   r[cl   +   ic2   +   ic3]     /§  exp(i(ka   -   TT/4))U(U10) 

,. A 
Ü 

k-. 1 
L 
(► 

f-r- 
**- f 
i 
k. 

L 
t i 

J 

where 

+  2i( c     -   c- 

1 
2ka 

3  +   4m . 
c-   =   g-j  cot 8 

2 8ka o 

) J~ exp (-i(ka  -  TT/4))U^(U20)| (6) 

3 +   4m 
8ka cot e 

All other parameters have the same definition as in the Final Report (1975). 

Figure  11 shows the complete transition field with the contour integral 

contribution included and omitted.    From the curves,  it is evident that this 

higher order 1/ka term of the transition field changes the magnitude of the 

field in the transition regions and the phase at the broadside region.     The 

y 
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effect of this term will be best determined by computation of the far-field 

pattern and a comparison of the computed pattern with the corresponding pat- 

tern from the normal mode series. 

Transition fields for higher order modes for the ^-polarization are 

shown in Figure   12 for m = 2 and m  =    3.     These graphs also include the con- 

tributions of the UJ^u-,^ and U^tL-J functions but not the contour integral 
(1)(A) y    ^u «P    iu 

P^i        .    Again,   the transition fields exhibit the singularity at the transition 

point with rapid phase variation everywhere. 

It is apparent from the graphs that the magnitude of the modal transi- 

tion fields for both components increases as the mode number increases. 

This behavior of the transition fields,   and also of the diffraction fields of the 

next section,   results from the asymptotic representation of the associated 

Legendre functions: 

P^l/2(cOS t)) 
\TT sinö/ 

■m-1/2 (sin ^ 1-4 m    cot    6 c 
8v 

os 4^ 
(7) 

where 

^  =  vB + (l-2m) TT/4 

Equation (7) shows that functions decrease  rapidly with m because of 

the coefficient v ,  and at first glance,   the transition and diffraction 

fields should also be decreasing accordingly.     The actual expressions for 

these component  fields,   however,  involve the ratio of the Legendre functions 

to their derivatives,  and the coefficient v~ is eliminated.    The ratio 

is then expanded in a series,  with the ar.sumption that 

l-4m    cot 6    cos ^ 
—n— o o 

« sin 

or that 

3 + 4m . 0       .     ,,. 
—ö    cot 6     sm V 

ÖV o o 
« cos ^ 

1. 
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These conditions are not always satisfied,  and the expansions result in 

erroneous numerical results,  especially for the larger values of m.     The pos- 

sibility of avoiding the series expansion and,   thereby,   of removing this source 

of error should be considered. 
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4. 0   NUMERICAL COMPUTATION OF DIFFRACTION 
COEFFICIENTS AND DIFFRACTION FIELDS 

/ 

J 
1 

The diffraction field of a particular  circumferential mode is a function 

of a ka-dependent factor and the diffraction coefficient corresponding to the 

mode in question.     The diffraction coefficient is independent of ka,   i.e.,   the 

position of the  radiating element on the conical surface.    It is this character- 

istic of the diffraction coefficient that makes the asymptotic method useful for 

computation of far-field patterns from radiating elements on a conical surface. 

Throughout this report, the diffraction fields of a particular mode 

are referred to by the computer program variable names for the 9-polarization 

and «^-polarization,   DFT and DFF,   respectively.     The analytical expression 

of these fields and of the diffraction coefficients,   as well as of the optical and 

transition fields,   were given in previous reports on this contract and are iden- 

tified in Section 3.     Computed total diffraction coefficients of the first four 

modes of the G-polarization are shown in Figure   13.    The corresponding 

modal diffraction fields are obtained by multiplying the diffraction coefficients 

by the factor exp (ika)/(ka)      .    The modal far-field is obtained by adding 

the diffraction field to the corresponding modal optical and transition fields. 

The diffraction coefficients of the 4>-polarization for m=I,  m = 2,  and m = 3 

modes are  shown in Figure   14. 

In the computations for the plots of Figures   13 and  14,   at least 

64 terms were used in the summation of the SS,     and SS-,    series.    Figure  15 in £n 0 

shows the diffraction coefficients of Eg and Es,   respectively,   of the m=l 

mode with only 39 terms in the summation of the two series.    Comparison of 

these curves with the corresponding curves of Figures   13b and 14a,   in which 

66 terms were used in the series,   shows that the magnitude of the functions is 

28 

—"-■— 

v- 
■   - - - ~ - -^ ~ ^sa&u —i  WW «Wk     '■'    ^ y- 



.,i«i|w»    .,III«.PIJ. i ■' .^.»-^-T^IJ.PMWIIIIJ.I i        <,. n-mwn-r^^m^m^mi^mm^^imii^imm mmm: mmmmmmmmmmmmm* 

i 

* 

7   *m 

7 

e 
a. 
0      5 
111 
0 

2      < 

2 

a.    For o-, fi (6,   en),  m = 0 'oe 0' 

MAGNITUDE 
*  PHASE 

ISO 

140 

100 

60 

20  | 

IU 

< 
20 J 

^o 

100 

140 

180 
30 80 90 120 

THETA,d»g 
160        180 

180 

-140 

60 90 120 
THETA, d«g 

b.    For aie (6,   e0), m = 1 

(continued) 

Figure  13.    Computed diffraction 
coefficients of B-polarization for 
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virtually unaltered while the phase variation changes noticeably.    Moreover, 

the difference between the two corresponding graphs is not near the transition 

point  6 = tr - 0- as suggested by Pridmore-Brown ' but rather At angles of 6 

greater than 60 degrees.     Figure  15b demonstrates the overall convergence 

characteristics of the series in the a     .  (6,  6n) diffraction coefficient of the 
mq) u 

cb-polarization with ka terms in the ZS,   ,  25-,    sums.    In all the above com- r In Zn 
putations,  ka   =   39.    This value of ka allows comparison of the computational 

results with the results from the modal series computer program.    Modal pat- 

terns  showing the effect of the number of terms in the series are presented in 

the next section.    The oscillatory behavior of the magnitude of the diffraction 

coefficient, o-     ,  (6,   6-),   over most of the 6-range and the rapid phase varia- 

tion are clearly an indication of poor convergence with the indicated number 

of terms.    Comparison of this curve with the corresponding curve of the 

9-polarization (Figure 15a) shows that the ^-polarization computations are 

more dependent on the number of terms in the two series SS,     and 23,   .. r In 2n(|) 
It is also evident from the figures that the diffraction coefficients of 

the B-polarization decrease in magnitude with increasing mode number m for 

the lower order modes,  except in the transition regions.    The inherent singu- 

larity of the diffraction coefficients at   6 =  TT - 6    is clearly shown.    As the 

mode number increases,   however,   the diffraction coefficients of both polari- 

zations increase in magnitude throughout the whole range of the angle theta. 

The diffraction coefficient of Eg for m=9,   shown in Figure  16,   demonstrates 

this behavior.    The increase in magnitude of the diffraction coefficients is 

believed to be caused by the asymptotic representation of the associated 

Legerdre functions,  which results in an incorrect representation of the modal 

diffraction fields not only in the region 6 < TT - 6    but also in the range 

. -v 

D.C.  Pridmore-Brown,   "Diffraction Coefficients for a Slot Excited 
Conical Antenna, " IEEE Trans,   on Antennas and Propagation, 
Vol.  AP-20,   No.   1,   pp.   40-49,   January 1972. 

y 
i: 

34 

--" - -----   i  in    i i      iilMfi ii i - 



»I^UW^WH.,.!»^«» 

1      1 

8 H 

«6 

S 5 

Q 

t   4 
Z 
(3 
< 
2 

9|{   MAGNITUDE 
PHASE 

180 

140 

100 

60 

h20 

y-20 

■60 

-100 

.140 

• 180 
30 60 90 120 150 

THETA.deg 
180 

Figure 16.    9-polarized 
diffraction coefficient, 
<r9e(e, e0), m = 9. 

0 
35 

^Uiwi'*wPii|iWiiiiJWpw.ni.T inm npm-mw*!* ._^ ^. 



,imm.v.wj. mm>wmm..'mm j,-!,.»,.,—r- .-.-    , ,k i w^R^^ppg^p^pp^pj^p^ppijipppipppil  I«1 Jl-1   I   ■  '■, .-^WW^P*W«^*P»P«BWi^BWWBWl 

5. 0   COMPUTATION OF MODAL AND TOTAL FIELDS 

\ 

•»■• ■;, 

Modal circumferential fields from the asymptotic approach were 

computed by summation of the optical,   transition,  and diffraction fields for 

the particular mode.    The computed patterns of both polarizations were plotted 

with the corresponding patterns from the exact modal series computer pro- 

gram.    The m   =   0 modal fields for the 6-polarization are shown in Figure  17. 

The agreement between the modal series and the asymptotic methods is excel- 

lent for this mode for 6 2: 15 degrees; however,   for 6 < 15 degrees,   the 

asymptotic method computations begin to depart from those of the modal 

series. 

The comparative field patterns for the m = 1 mode for the Ö-polarized 

and 4)-polarized field components are shown in Figures  18 and 19,   respectively. 

For this mode,  the agreement of the two methods is quite good over most of 

the B-range.    For the 6-polarization the two patterns differ in the  range of 

6 < 20 degrees.    A noticeable difference is also seen in the vicinity of  6 =   6   , 

but the agreement is still excellent.     The differences between the two different 

patterns of the ^-polarization occur in the same G-range as noted previously 

for the 6-polarization. 

As the mode number is increased,   the variations between the patterns 

from the two computation methods become more pronounced.    The pattern for 

the m = 2 mode illustrates these characteristics.    For the e-polarization. 

Figure 20,   the two patterns differ by about  1 dB in the range of 45    < 6  < 165   . 

For values of 8 outside this range,  the difference between the two patterns is 

greater than for the lower order modes shown previously.    Similar differences 

between the two patterns are also seen in the <J)-polarized field.    Both of these 

patterns were computed for the azimuth angle of (t =  40 degrees and are shown 

in Figure 21.    For the 4»-polarization,   however,   the differences between the 
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Figure 20.    Comparison of modal series solution and 
asymptotic solution,  EQ,  m = 2,   <t> = 0°. 
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two patterns extend to values of 6 < 30 degrees.    Additionally,  the null in the 

broadside region of the asymptotically computed pattern is shifted approxi- 

mately 5 degrees toward the tip of the cone compared with the pattern from 

the exact modal series program.    Thus,   the pattern from the asymptotic 

method is not accurate in the region 8 < 30 degrees. 

In the Second Quarterly Report"",   an expression of the integral P^p- 

was obtained and later used in computation of the total transition field of the 

4)-polarization.     The effect of this term on the transition field was discussed 

in that report.    The effect of the same term on the total field,  however,   is 

more apparent.    Figure 22 shows two total field patterns of the 4>-polarization 

for the m =  1 mode.     Both patterns include the contribution from the above 

contour integral.    In addition,   one of the patterns is the result of 66 terms in 

the series 23,     and 23-,    while the other pattern was computed with only 39 

terms used in the two series.    A comparison between the two patterns shows 

that the broadside region is greatly dependent on the number of terms of the 

above sums,   i.e.,  the termination of the series.    It is evident from Figure 22 

that,  for proper convergence,   care must be taken to use a sufficient number 

of terms. 

A comparison of the pattern of Figure 22 that corresponds to 66 terms 

in the series and the patterns of Figure  19 shows th^it the consideration of 

?&C"    ten<^s t0 change the pattern significantly at broadside.    In fact,   the 

contribution of the contour integral,   in effect,   shifts the null of the pattern at 

the broadside region by approximately 10 degrees from the null of the pattern 

from the modal series.    In view of this effect,   the Pi. i.     contour integral 
29C1 

should not be included in future computations. 

The consideration of the above contour integral,   as well as of some 

other higher  order (1/ka) terms,  was motivated by the desire to improve the 

correspondence of the two patterns in Figure  19,   particularly in the region 

90 to 150 degrees.    However,   when the modal series pattern for this mode 

was computed again at closer intervals (A6   =   2.5   ),   the plotted pattern did, 

in fact,   contain certair small oscillations similar to those of the asymptotically 

Ü 

Bargeliotes and Villeneuve,   Second Quarterly Report,   loc.  cit. 
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computed pattern.    The  results are shown graphically in Figure 23.     Because 

the two patterns agreed as well as expected for 6 < 85 degrees,  no additional 

computations were necessary for this region. 

It is pointed out that only those terms of the contour integrals of the 

Ei expression that are  proportional to (l/ka) and  1/v     were considered in 

the computation of the diffraction field and the diffraction coefficients.     Con- 

sideration of higher order terms in (l/ka)       ,   even though of order zero in 

1/v   ,   would result in ka-dependent o-     ,  (0,   G   ),   i.e.,   dependent on the position 

of the radiating element relative to the cone tip. 

The computer program was appropriately modified to allow computation 

of the diffraction coefficients over the useful range of theta of the asymptotic 

expressions.    For the  remaining range of theta,   field points were computed by 

the normal mode series  section of the program.    After the diffraction coef- 

ficients were computed and stored,   they were used as input data to the pro- 

gram for subsequent computation of the fields from slots at other locations on 

the cone.    Figure 24 shows the 6-polarized total pattern for the first three 

modes,   M = 2,    It also shows the same pattern computed completely by the 

normal mode series program.    The pattern computed from the asymptotic 

expressions is clearly inaccurate for 6 <   35°; the agreement with the normal 

mode series computation is quite good over the  remaining range of theta 

except at 6   =   170   .    Here,   the asymptotic curve is 2. 4 dB higher than the 

normal mode series curve.    In view of the behavior of the higher order mode 

transition and diffraction fields discussed earlier,   it is anticipated that total 

patterns that include higher order modes will differ significantly from cor- 

responding patterns from the normal mode series.    The (t>-polarized total 

pattern for the first three modes is shown in Figure 25. 
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Figure 23.    Comparison of modal series solution (AG = 2.5  ) and 
asymptotic solution,   Efy,  m =  1,   «I» = 90°. 
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6.0 MUTUAL COUPLING COMPUTATIONS 

The effect of scattering from the tip on antenna impedance for slots 

on cones was considered by Golden et al  .    The mutual admittance between 

two slots was approximately calculated with the use of a cylindrical model 

with the same local radii of curvature as the cone.    The equivalent cylinder 

has a radius equal to the radius of the circular cross section of the cone mid- 

way between the two slot antennas. 

Mutual coupling computations for circumferential slots on a cylinder 

were performed with the computer program obtained from Stewart.    The pro- 

gram computes self- and mutual admittance of circumferential slots as a 

function of angular separation for various separations in the radial direction. 

These mutual coupling computations were utilized to check accuracy of mutual 

coupling results from the Geometrical Theory of Diffraction approach devel- 

oped by A. Hessel.    The admittance characteristics of two slots for cylinder 

radii of 1. 999 inches and 3. 777 inches at frequencies of 9. 0 and 9. 75 GHz, 

respectively,  are shown in Figures 26 and 27. 

*. ■» 

K.E.  Golden,   G.E.  Stewart,   andD.C.  Pridmore-Brown, 
"Approximation Techniques for the Mutual Admittance of Slot 
Antennas on Metallic Cones, " IEEE Trans,  on Antennas and 
Propagation,   Vol.   AP-22,   January 1974,   pp.  43-48. 
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Figure 27,    Mutual admittance of 
circumferential slots on a conduct- 
ing cylinder,   P.    = 3.777 inch. 
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7. 0   RECOMMENDATIONS FOR FURTHER INVESTIGATIONS 

The various terms of the asymptotic expressions representing the 

EQ and EA radiation fields of a slot on a conducting cone will be computed and 

analyzed in detail.    Computations of the diffraction coefficients of the field 

components were also performed for the lower order modes.    The accuracy 

of the  representation of the radiation fields by the asymptotic expressions 

was examined by computation of the radiation fields for a particular mode 

and comparison of the   results   with  the  corresponding modal  fields  from 

the exact modal series computer program.    For the lower order modes the 

two solutions show good agreement «verywhere except,   as expected,  in the 

vicinity of the region 6 < TT _ 0        For the (^-polarization,  the region of poor 

performance of the asymptotic solution extends to about 6 < 30 degrees for the 

m = 1 mode.    For m > 1 modes and a slot location of 39 radians from the tip, 

the agreement between the asymptotic solution and the exact solution is not so 

good.     The departure is believed to be caused by the asymptotic representa- 

tion of the Legendre functions used in the transition and optical fields as well 

as in the diffraction coefficients   and from a series expansion of their ratios. 

An improved representation would eliminate this problem; however,   no such 

improved representation is presently available. 

It should be noted that,   as presently defined, cr      and cr     .   each have r m mcp 
a singularity at 8 = ir - 0  .    However,   there is a compensating singularity in 

the transition fields so that the total fields remain finite at that angle.    It 

appears that,   by combination of the singular terms in the transition fields   rith 

the singularity in the tip diffraction coefficients,  new diffraction coefficients 

could be defined that remain finite everywhere and that describe the diffraction 

due to the tip of the cone.    The total tip diffraction could then be obtained by 

summation over the new a     and v    .,   weighted by the corresponding strength 

of the mth source coefficient.    The remainder of the field could be obtained 
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by the geometric theory of diffraction and the results combined to give the 

total field valid for large values of ka. 

The combination of the complete modal series solution when ka is 

small and the geometric theory of diffraction with tip-diffraction coefficients 

when ka is large would provide the capability for pattern calculations for slots 

at any distance from the cone tip. 
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